Acta Crystallographica Section E Structure Reports Online

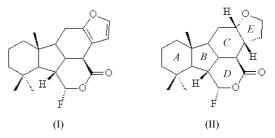
ISSN 1600-5368

Silvana Guilardi,^a* Jackson Antônio Lamounier Camargos Resende,^a Maria Teresa do Prado Gambardella,^b Antonio Jacinto Demuner,^c Luis Claudio de Almeida Barbosa^c and Dorila Piló-Veloso^d

^aInstituto de Química, Universidade Federal de Uberlândia, Caixa Postal 593, CEP 38408-100, Uberlândia, MG, Brazil, ^bInstituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, CEP 13560-970, São Carlos, SP, Brazil, ^cDepartamento de Química, Universidade Federal de Viçosa, Caixa Postal 111, CEP 36571-000, Viçosa, MG, Brazil, and ^dDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 31270-901, Belo Horizonte, MG, Brazil.

Correspondence e-mail: silvana@ufu.br

Key indicators

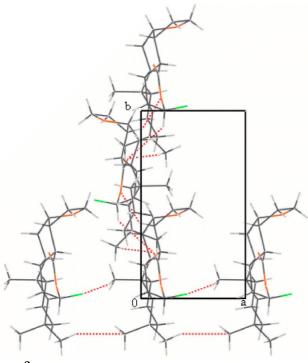

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.043 wR factor = 0.107 Data-to-parameter ratio = 9.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved As part of our studies on synthetic derivatives of 6α , 7β dihydroxyvouacapan-17 β -oic acid, isolated from the seeds of Pterodon polygalaeflorus Benth, the structure of the title compound, C₂₀H₂₉FO₃, was determined. The crystal packing is stabilized by C-H···O and C-H···F intermolecular interactions. Received 2 October 2003 Accepted 20 October 2003 Online 15 November 2003


Comment

Natural products have proven commercial impact in the agrochemical arena, both as leads to new modes of action and as products in their own right (Lewer *et al.*, 2003). Several monoterpenes and sesquiterpenes are involved in allelopathic interactions among plant species. Studies have shown that the natural product 6α , 7β -dihydroxyvouacapan- 17β -oic acid (ADV) and other furan diterpenes affect the growth of *Sorghum bicolor L.* and *Cucumins sativus L.* (Demuner *et al.*, 1996).


Like compound (I) (Ruggiero *et al.*, 2000), the title compound, (II), is a derivative of ADV that was obtained in the search for new agrochemicals with herbicidal and/or plant growth regulatory activity. The molecular formula, $C_{20}H_{29}FO_3$, was derived from high-resolution mass spectrometry (M^+ ion peak at m/z 336.1124). The IR spectrum showed absorptions at 1775 cm⁻¹ (C=O) and 1050 cm⁻¹ (C-F). In the ¹H NMR spectrum, the signal due to H21, attached to C21, was observed at δ 6.08 as a doublet of doublets with $J_{H(21),F} = 54$ Hz and $J_{H(21),H(6)} = 4$ Hz, due to the couplings with both fluorine and H6 (attached to C6) nuclei, respectively. The small vicinal coupling (4 Hz) between H6 and H21 is consistent with fluorine in the α position (Demuner *et al.*, 1998). An *ORTEP*-3 (Farrugia, 1997) drawing of (II) is shown in Fig. 1, and selected geometric parameters are presented in Table 1.

The puckering parameters for the rings (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) show that the rings $A \ [\theta = 3.2 \ (6) \ \text{and} \ \varphi = 324 \ (10)^{\circ}]$ and $C \ [\theta = 19.0 \ (2) \ \text{and} \ \varphi = 13.0 \ (5)^{\circ}]$ are in chair conformations. Rings $D \ [\theta = 52.2 \ (2) \ \text{and} \ \varphi = 276.4 \ (2)^{\circ}]$ and $E \ [\theta_2 = 0.550 \ (1) \ \text{\AA}$ and $\varphi_2 = 128.5 \ (2)^{\circ}]$ adopt half-chair and twist conformations, respectively. The cyclopentane ring (B) has an envelope conformation $[\theta_2 = 0.927 \ (4) \ \text{\AA}$ and $\varphi_2 = 29.8 \ (2)^{\circ}]$, as in compound (I), and atom

Figure 1

An ORTEP-3 (Farrugia, 1997) view of (II), with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Short contacts in the packing of the title compound, viewed down the c axis.

C10 is 0.745 (6) Å out the plane defined by atoms C5, C6, C8 and C9.

The *B/D* and *C/E* ring junctions are *cis*, while junctions *A/B*, *B/C* and *C/D* are *trans*. A least-squares superposition of the *A*, *B*, *C* and *D* rings of compounds (I) and (II) results in an r.m.s. deviation of 0.104 Å.

Intermolecular short contacts (Table 2 and Fig. 2) link the molecules in chains along the [100] and [010] directions. This packing mode is similar to the hydrogen-bonding packing in ADV (Ruggiero *et al.*, 1997). In the crystal packing of compound (I), there is also a short $C-H\cdots$ F contact.

Experimental

The title compound was prepared from 6α -hydroxyvouacapane- 7β ,17 β -lactone, a derivative of 6α ,7 β -dihydroxyvouacapan-17 β -oic acid, under the same conditions as reported in the literature (Demuner *et al.*, 1998). Suitable single crystals of the compound were obtained by slow evaporation of a dichloromethane–ethanol (1:10) solution.

Crystal data

C20H29FO3 Mo Ka radiation $M_r = 336.43$ Cell parameters from 25 Orthorhombic, P212121 reflections a = 6.0284 (4) Å $\theta = 10.3 - 18.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ b = 10.850 (2) Å c = 26.921 (3) Å T = 293 (2) KV = 1760.8 (4) Å³ Prism, colourless Z = 4 $0.02\,\times\,0.01\,\times\,0.01$ mm $D_x = 1.269 \text{ Mg m}^{-3}$

 $\theta_{\rm max} = 26.3^{\circ}$

 $h = -7 \rightarrow 0$

 $k = -13 \rightarrow 0$

3 standard reflections

frequency: 120 min

intensity decay: 2%

 $l = 0 \rightarrow 33$

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: none 2095 measured reflections 2093 independent reflections 1125 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > \sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2]$
$wR(F^2) = 0.107$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.004$
2093 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

F-C21	1.387 (5)	O2-C17	1.186 (4)
O1-C15	1.412 (5)	O3-C17	1.386 (5)
O1-C12	1.439 (5)	1.439 (5) O3-C21	
C15-O1-C12	109.0 (3)	O2-C17-C14	128.4 (4)
C17-O3-C21	119.9 (3)	O3-C17-C14	114.4 (3)
O1-C12-C13	103.2 (3)	F-C21-O3	107.7 (3)
O1-C12-C11	108.7 (3)	F-C21-C6	110.6 (3)
O1-C15-C16	107.8 (4)	O3-C21-C6	112.0 (3)
O2-C17-O3	117.2 (4)		

Table 2

Hydrogen-bonding	geometry	(A, ')).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots O3^{i}$	0.98	2.65	3.449 (5)	139
C18-H18A···O2 ⁱⁱ	0.96	2.76	3.684 (5)	161
$C21 - H21 \cdots O2^{ii}$	0.98	2.77	3.560 (6)	138
$C20-H20A\cdots F^{iii}$	0.96	2.68	3.619 (4)	166
	1, 1, 0	··\ 1.1	() 1	

Symmetry codes: (i) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) x - 1, y, z.

In the absence of significant anomalous scattering effects, the Flack (1983) parameter is essentially meaningless. All H atoms were positioned geometrically, with C–H distances in the range 0.96–0.98 Å, and a riding model was used, with $U_{\rm iso}$ set to 1.5 (for methyl H atoms) or 1.2 (for other H atoms) times the value of $U_{\rm eq}$ of the carrier atom.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD*4 (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *MERCURY* (Bruno *et al.*, 2002); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

The authors thank the Brazilian agencies CNPq, FAPEMIG, FAPESP, FINEP and CAPES for financial support.

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Demuner, A. J., Barbosa, L. C. A., Piló-Veloso, D., Alves, D. L. F. & Howarth, O. W. (1996). J. Nat. Prod. 59, 770–772.
- Demuner, A. J., Barbosa, L. C. A., Piló-Veloso, D. & Howarth, O. W. (1998). Aust. J. Chem. 51, 61–66.
- Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.
- Lewer, P., Chapin, E. L., Graupner, P. R., Gilbert, J. R. & Peacock, C. (2003). J. Nat. Prod. 66, 143–145.
- Ruggiero, S. G., Gambardella, M. T. P., Branco, M. C., Demuner, A. J., Barbosa, L. C. A. & Piló-Veloso, D. (2000). Acta Cryst. C56, 868–869.
- Ruggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Piló-Veloso, D. (1997). Acta Cryst. C53, 982–984.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.